
Abstract

This paper describes TVML (TV program Making Lan-
guage) for automatically generating television pro-
grams from text-based script. This language describes
the contents of a television program using expressions
with a high level of abstraction like "title #1" and
"zoom-in." The software used to read a script written
in TVML and to automatically generate the program
video and audio is called the TVML Player. The pa-
per begins by describing TVML language specifica-
tions and the TVML Player. It then describes the "ex-
ternal control mode" of the TVML Player that can be
used for applying TVML to interactive applications.
Finally, it describes the TVML Editor, a user inter-
face that we developed which enables users having
no specialized knowledge of computer languages to
make TVML scripts. In addition to its role as a televi-
sion-program production tool, TVML is expected to
have a wide range of applications in the network and
multimedia fields.

1. Introduction

Broadcasting has a long history as a medium for con-
veying information. The techniques used in this field,
and especially in the production of television pro-
grams, have progressed over the years to become
highly refined means of presenting information. At
present, however, only broadcasting stations are able
to use these techniques satisfactorily. In other words,

television program production is still the domain of
specialists.

In contrast, tools are now being provided that allow
individuals to prepare various types of media like
documents, pictures, and magazines, as well as
Internet-based hypertext, entirely in the privacy of
one's own room. One reason for this is that the once
limited use of the Internet by scientific and technical
professionals has expanded to widespread use by in-
dividuals.

Individuals cannot easily produce television programs
with conventional techniques because program pro-
duction requires various video and audio equipment
as well as studios, announcers, and so forth. How-
ever, if we limit the target programs to the one for
information presentation, it becomes quite possible
to create studios, announcers, and the like with cur-
rent technology by computer through the use of com-
puter graphics (CG), voice synthesizers and multi-
media computing. This paper describes a mechanism
for generating television programs in real time on only
a desktop computer through the use of these technolo-
gies.

We have developed a new language that can repre-
sent an entire television program by text, called TVML
[1]-[4](TV program Making Language). TVML is not
limited to describing the parts played by actors. In-
stead, it can be used to describe all program-produc-
tion work, including pre- and post-production work

TVML (TV program Making Language)
- Automatic TV Program Generation from Text-based Script -

1) NHK (Japan Brodcasting Corporation) Science and Technical Research Laboratories
1-10-11, Kinuta, Setagaya-ku, Tokyo, 157, Japan. Email: hayashi@strl.nhk.or.jp

1)Masaki HAYASHI, 2)Hirotada UEDA, 3)Tsuneya KURIHARA, 4)Michiaki YASUMURA

2)Hitachi-Denshi, Ltd., 3) Hitachi, Ltd., Central Research Laboratory, 4)Keio University

such as that involving sets, props, cameras, VCR in
playback, superimposing, titles, background music,
and narration. This paper describes TVML as well as
a TVML Player, which converts the television-pro-
gram script written in TVML to program video and
audio in real time. It also describes a TVML Editor,
which is a user interface that we have developed for
the creation of TVML scripts by users having no spe-
cialized knowledge of computer languages.

2. Mechanism of Real-time Generation

of Television Programs

The generation of television programs by computer
requires some kind of intermediate expressions that
can be given to the computer to indicate tasks like
directing the performance of an actor and configur-
ing a program. TVML is a text-based language that
uses such expressions. The expressions can be easily
understood when perused by people and instruct the
computer what to do. TVML can describe an entire
television program through highly abstract text-based
expressions like "title #1" and "zoom-in". The soft-
ware that we developed for interpreting scripts writ-
ten in TVML and automatically generating program
video and audio in real time is called the TVML Player.
This is illustrated in Fig. 1.

The television programs targeted here are of the types
of programs that present information such as news,
weather forecasts, event guides, and documentaries.

For the most parts, television programs like dramas
and live variety shows that are essentially one-time
creative works are excluded. The production elements
of such information-oriented television programs are
relatively simple. These elements are shown in Table
1. together with the techniques used in the TVML
Player to generate each element by computer. For ex-
ample, a studio shot is generated entirely by CG in
which computer-generated actors in a computer-gen-

.....
BOB = "Hello"
camera = zoom_in
BOB = "This is"
movie = start
super = "Hall A"
......

Gr a ph ic w or kst ati o n

+

Voice synthesizer

TVML scriptMan -m ach in e
in terf ace TVML Player

hello

User
TV program

Fig. 1. General configuration of system for generating TV programs by TVML

Table 1. Elements in actual program production
and methods used in TVML Player

Program production Method used in TVML Player

- Studio shot
Studio set

Actor

Lighting
Camerawork

Real-time CG set
Real-time CG character with
speech by voice synthesizer
Lighting setup in real-time CG
Camera setup in real-time CG

- Motion picture

VCR Movie file playing (QuickTime)
- Title

Text information
Static image

Text layout section of HTML
Image data file (TIFF)

- Superimposing

Text information

- Sound

Music

Narration

Audio file playing (AIFF)

Synthesized voice
- Video effect Cut change only

- Sound effect Audio mixer

Text layout section of HTML

erated set are given speech through a voice synthe-
sizer, and the entire scene is "shot" by a camera within
the CG world. A motion picture is achieved by play-
ing back a movie file, titles and captions are gener-
ated by using the layout-description part of HTML to
display text information, audio is produced by play-
ing back audio files, and narration is generated by
using a voice synthesizer. The generation of these el-
ements requires two types of data: script data written
in TVML and various forms of reference data.

The next section discusses how a television program
should be described on a text basis to establish TVML
language specifications.

3. TVML Language Specifications

3.1 The need for TVML

As explained above, we have designed TVML as a
text-based language that people can read and under-
stand easily. In this section, we examine the reasons
for developing the TVML intermediate language.

The contents of a television program can be divided
into the elements given in Table 1, as described in
Section 2. These elements are performed at various
points in time, sometimes simultaneously. The pat-

tern for the initial segment of a typical news program,
for example, is shown in Fig. 2. The model in the fig-
ure consists of three main components: time, materi-
als, and action. Text-based scripts may not be condu-
cive to describing actions of multiple elements that
are performed simultaneously according to the model.
A graphical user interface (GUI), however, can be used
for such descriptions. It should be possible to transfer
the two-dimensional model in Fig. 2 directly to a GUI.
For example, GUIs have become a basic component
of non-linear editing because of the dramatic jump in
efficiency that they provide. Macromind's "Director,"
a well-known multimedia production tool, combines
a GUI similar to the two-dimensional structure of Fig.
2 with a text-based language for describing actions.

Although GUI appears to be appropriate for describ-
ing a television programs, we have designed TVML
as a text-based intermediate language. This is because
we are considering the generation of TVML scripts
by computer in addition to their preparation by people.
For example, current research is examining the pos-
sibility of assigning indexes to video clips in televi-
sion programs so that "digest versions" of programs
or customized programs created for specific audiences
can be prepared. Such research requires that the de-
scription of a television program be understood by
the computer. It can therefore be said that a GUI is a
good method from the viewpoint of human use when

Fig. 2. Example of time, materials and action in TV program

announcer

camera
superimposing

title
music
movie

Materials

Time

greeting talk

zoom in

superimposing names

music start music fade out

play back VCR

narration

superimpose on

insert title

talk with the title

opening title

Action

describing programs, and that a text-based language
is clearly better when a program description must be
handled by computer. Therefore, we adopted the
mechanism shown in Fig. 3. Here, TVML is positioned
as a language that can be used by both people and
computers. When people produce programs, some
type of GUI is used for describing the programs then
outputting TVML scripts, and when computer pro-
duce programs, the computer make TVML scripts
directly.

3.2 Guidelines for determining specifications

The specifications for the TVML language have been
determined with reference to the structure of program
scripts used in actual television program production.
In addition, to enable TVML to be handled as an in-
termediate language by the computer as mentioned
above, GUI-oriented elements were avoided and
specifications were set according to the following
guidelines:
(1) Descriptions are to be of the event-driven type
without establishing a time axis.
(2) Actions are to be expressed by meaningful words.

(3) The language is to be completely interpretive.

According to guideline (1) above, TVML has been
designed so that an event unit corresponds to one line
of TVML. Advancing from one line to the next means
moving through time. Moreover, a structure is em-
ployed that has no conditional branches, loops, and
the like as found in standard computer languages like
C and FORTRAN. This enables television programs
to be conceived and expressed in TVML in much the
same way that a person might write a paper or a
scriptwriter might write a script. With regard to guide-
line (2), the problem arises as to what level of ab-
straction should be used when describing actions.
Eventually, of course, the computer must be able to
read such descriptions and execute the given actions.
The level of abstraction for these descriptions should
therefore be set so that the computer is just able to
perform the action automatically. This means that, as
shown in Fig. 4, the work below where TVML is set
is automatically performed by the computer and work
above that level is creative work to be performed by
people. In other words, TVML is placed at the point
where automatic work and creative work meet. The
classes of events in TVML are listed in Table 1.

Fig. 4. Level of abstraction where TVML should be
setup

Planning

Location, gathering clips
Studio shooting

Editing
Audio Mixing

Complete
program

Art work

Making story board

Higher abstraction

Physical

Program production Data

Story board

Editing data

Creative
work by
human

Automatic
work by
machine

Making music and sound

Making CG

Planning document

Document,
memo,
Mail, Word
processor, ..

TVML

Fig. 3. TVML is a common language between
human and computer

TVML script

TVML Player

TV program

GUI

Human Computer

Finally, guideline (3) is adopted so that the script will
be executed in a step-by-step time sequence with a
description format that does not generate ambiguities
and does not require that the entire script be scanned
beforehand. This guideline is also adopted so that
TVML can be applied to live programs being shown
in real time.

3.3 Basic specifications of the TVML language

The following describes basic specifications of TVML
with an emphasis on event description and time de-
scription.

(1) Event description
The event format consists of an event type from the
list of classes in Table 1, a command provided for the
given event type, and a list of parameters required by
the command for execution. For example, to make a
character named BOB say "Hello, I'm BOB," one
would write:

character: talk (name=BOB, text="Hello, I'm BOB.")

Here, "character" is the event type, "talk" is the com-
mand, and the items inside the parentheses are pa-
rameters. The general format of an event is as fol-

lows:

Event type: Command name (arg1=data1,
arg2=data2, arg3=data3,)

Table 2 lists types of events and associated commands
provided in TVML. Here, parameters represented by
"arg" in parentheses need not follow a particular or-
der and default values are adopted for any parameters
that are omitted. In other words, parameters that are
not explicitly specified by the user will be set by the
computer. Conversely, the user can specify as many
parameters as needed for indicating detailed instruc-
tions. For example, if the user desires to indicate a
certain speaking speed and an exaggerated character
gesture, the event description could be written as fol-
lows.

character: talk (name=BOB, text="Hello, I'm Bob,
rate=5.0, emotion=excite)

(2) Time description
One event is described on one line in TVML. Upon
completion of each event, the system advances to the
next line to process the next event. Consider, for ex-
ample, the following two lines.

character: talk (name=MARY, text="Look at this video.")
movie: playfile (filename=test.mov, from=30, to=450)

Table 2. Events and associated commands provided in TVML (see Appendix for a complete list)

c harac ter :

c amera :

s et:
pr op:

l ight :

mov ie:
ti tle:

s uper:

nar rati on:

s ound:

CG c hara cter
CG c amer a

CG s tudi o s et

CG pr op
CG l igh ting

Moti on pi c ture

T itle

Super imp osi ng

Sound
Nar rati on

tal k (mak e a s peec h), wal k, l ook (l ook at s omethi ng) , s it, s tand, b ow, ...

c los eup (foc us on s omethi ng), t wos hot (tw os hot), ...

openm odel (open m odel ing d ata), c hange (c hange s et) ,...

pos i tion (pos it ion p rop) , openi magepl ate (mak e a pl ate wi th tex tur e im age), .. .
model (setu p li ghti ng) , sw itc h (turn on and off the light) , ...

pl ay (mov ie fil e pl ay in g),...
di sp lay (d ispl ay t itle),. ..

on (turn o n ca ption),...

pl ay (audi o fi le play ing), mix er (c ontro l mi x er) ,...

tal k (mak e a s peec h), ...

F un ctio n Even t t ype Exam ples o f com man d (a p ar t)

Here, the computer-generated character named MARY
is made to say "Look at this video," and after this, the
motion-picture file named "test.mov" is played back
from frame 30 to frame 450. There are actually two
types of events: an action event in which time is taken
to perform some action (like "sit") lasting from the
beginning to the end of the event, and a state event
that simple specifies a state change (like superimpos-
ing ON) with no elapsed time. Consequently, if a user
wants to execute two action events simultaneously,
"wait=no" must be added as a parameter to the first
action event. This expression will be treated as a state
command. For example, to make the characters BOB
and MARY bow at the same time and to superimpose
text after the bowing is completed, the following event
descriptions would be used.

character: bow (name=BOB, wait=no)
character: bow (name=MARY)
super: on (type=text, text="Mary & Bob")

Here, if "wait=no" is not included in the first line, the
actions would be such that MARY starts bowing only
after BOB completes his bow.

When "wait=no" is added to an action event
and treated as a state event, it becomes necessary to
check whether a certain action event has been com-
pleted. This is why a wait command is provided for
all action events. The format of the wait command is
as follows.

Event type: wait_Command Name (arg1=data1,
arg2=data2, arg3=data3,)

This wait command blocks further execution of the
script until the action specified by the command is
completed. In short, the following line:

character: bow (name=MARY),

is equivalent to the following two lines:

character: bow (name=MARY, wait=no)
character: wait_bow (name=MARY).

The above structure can therefore be used to describe
simultaneously occurring events. For example, if the
user wants to superimpose text 1.5 seconds after start-
ing playback of a motion-picture file from frame 100
to frame 200, the following description can be used.

movie: playfile (filename=test.mov, from=100,
to=200, wait=no)

wait (time=1.5)
super: on (type=text, text="This is a test movie.")
movie: wait_playfile()

In addition to events and wait commands, TVML also
provides a several commands that are called directly
without being treated as events. These are called "di-
rect commands."

4. TVML Player

4.1 TVML Player operation

The TVML Player is software that reads a program
script written in TVML and converts the script to pro-
gram video and audio in real time. The hardware plat-
form of the TVML Player consists of a Silicon Graph-
ics O2 graphics workstation and a voice synthesizer,
as shown in Fig. 5. Text data to be read aloud can be
input to the voice synthesizer via a serial port. The
audio output of the synthesizer is passed to the A/D
input of the O2 workstation, and then the A/D con-
verted data are subjected to a low-pass filter to pro-
duce voice-level output. The mouth of the computer-
generated character is opened in direct proportion to
the magnitude of this output to achieve lip-synching.
The TVML Player supports QuickTime and SGI mov-
ies as well as motion JPEG as motion-picture files,
AIFF and AIFC files as audio files, and TIFF as still
pictures. It also supports OpenInventor and VRML
1.0 for the modeling data format in computer-gener-
ated characters, sets, and props. The TVML Player
features a straightforward user interface with buttons

for playback, stop, and other functions, enabling se-
lection of TVML-script files and immediate playback.
Figure 6 shows an example of a script written in
TVML and a sample of a program video generated
from this script by the TVML Player.

4.2 TVML Player external control mode

As described above, the basic operation of the TVML
Player is to play back a TVML program script from
start to finish. However, let us consider for a moment
an interactive application that gives a user the choice
of changing the story of a program that he or she is
currently watching. In this case, there must be some
kind of interface to accept a user's selection and some
method for dynamically changing the story develop-
ment based on the selection made[5]. This can be
achieved through TVML because a mechanism has
been provided to control the TVML Player from an
external interactive application program. We point out
again that the TVML Player functions completely as
an interpreter in which one line of TVML, correspond-
ing to one TVML event, is read in, syntactically
parsed, and executed before moving on to the next
line. A real-time interactive application can therefore
be constructed by having an external application send
a script to the TVML Player in an asynchronous man-
ner. The mode which enables a script to be sent to the
TVML Player from an external application is referred

to as the "external control mode" of the TVML Player.

As shown in Fig. 7, booting up the TVML Player in
external control mode allows an external program to
write commands to a "control file" provided in the
current directory and thereby control the TVML
Player. Consequently, if the TVML Player is always
left on, an external program can execute any TVML
script (of at least one line) at any time as well as sus-
pend external operation at any time. Moreover, TVML
Player outputs the script playback status to a "status
monitoring file" also provided in the current direc-
tory. In external control mode, therefore, with the
TVML Player up and running, an interactive applica-
tion can be constructed by having an external appli-
cation write commands and send scripts to the con-
trol file while checking the status monitoring file.

5. TVML Editor

For non-technical people to use TVML as a program-
production tool, a user interface is necessary that en-
ables a user with no specialized knowledge of com-
puter languages to create a television program by in-
tuitive operations. We have also been developing a
user interface called TVML Editor[6][7] that incorpo-
rates a GUI for such users. The TVML Editor allows
users to create a television program by computer

Audio output

Speaker

Graphic workstation

(SGI O2)D/A A/D

Aout RS232C

Voice synthesizer

Hard disk

CG data
Movie data
Sound data
Image data

Video output

Fig. 5. Hardware platform for TVML Player

Fig. 7. TVML Player in external control mode

 TVML Player
in external control mode

Interactive application

control status
- play specified

- stop
- now playing
- idling

user

Commands
Status flags

TVML file

mouse and window-based operations while interac-
tively checking intermediate results. In the TVML
Editor sample screen shown in Photo 1, a television
program is prepared by lining up a studio-shot, a
motion picture, and title blocks in a time sequence
and making clips where necessary. Each of these
blocks is divided into cells, and each cell corresponds
to a TVML command. Double-clicking on a cell opens
an operation window having buttons, scroll bars, and
so forth, that enables parameters such as dialogs to be
set up easily. A program created on the TVML Editor
can be exported as a TVML script for playback on the
TVML Player.

6. Conclusion

This paper described the TVML language, designed
for describing television programs by text-based
scripts, and the TVML Player that interprets the scripts
and outputs program video and audio. We also de-
scribed the TVML Editor, which is a user interface
that enables individuals without specialized knowl-
edge of computer programs to prepare television pro-
grams. These developments provide an environment
in which anybody can prepare a personal television
program in a relatively easy manner on a desktop com-
puter.

One objective of TVML is to popularize program pro-
duction by making television-program production
techniques available to the general user as described
above. This is not the only purpose of TVML, how-
ever, as many possibilities can be envisioned for it.
The following gives some examples.
- The TVML system can be used as a training tool
and simulator for professional program directors be-
fore they begin producing actual programs.
- As high-performance computers are expected to be
incorporated in television sets in the future, a TVML
Player installed in the built-in computer can provide
a powerful infrastructure for interactive television.
- TVML can be used to achieve automatic program-
generation for programs consisting of regular formats
and performances like news programs, because core
information given by users can be converted to a
TVML script automatically using the regular format
of the program.
- If the TVML Player is plugged into a WEB browser,
program scripts can be distributed and reused over
the Internet.
- TVML-based applications can be created that use
television programs as a metaphor to present various
forms of data like text, pictures, video, and audio
stored in databases.

A variety of applications like those described above
are currently being studied in a comprehensive man-
ner. We would like to point out here that the research
and development of TVML is being conducted on the
basis of open research system, and that joint-research
partners are always being looked for.

The TVML Player is distributed without charge as
freeware. The procedure for obtaining a copy is de-
scribed at the WEB site given below. This site includes
detailed information not given in this paper and we
suggest that you pay the site a visit.

http://www.strl.nhk.or.jp/TVML/index.html

Photo 1. A sample screen of a TVML Editor

References

[1] M. Hayashi, “Automatic Production of TV Pro-
gram from Script - A proposal of TVML,” Pro-
ceedings of the 1996 ITE Annual Convention, S4-
3, pp.589 - 592, (1996)

[2] M. Hayashi, “Machine TV Program Generation
from Text-based Script,” Proceedings of the Sec-
ond Symposium on Intelligent Information Media,
pp.137 - 144, (1996)

[3] M. Hayashi, Y. Orihara, S. Shimoda, H. Ueda, T.
Yokoyama, K. Yaegashi, T. Kurihara, M.
Yasumura, “A language specification of TVML
(TV program Making Language),” Proceedings of
the 1997 ITE Winter Annual Convention, 4-4, pp.
87, (1997)

[4] M. Hayashi, Y. Orihara, S. Shimoda, H. Ueda, T.
Yokoyama, K. Yaegashi, T. Kurihara, M.
Yasumura, “A language specification and a Method
for CG Generation of TVML (TV program Mak-
ing Language),” Proceedings of the Third Sympo-
sium on Intelligent Information Media, pp.141 -
148, (1997)

[5] M. Hayashi, “TVML (TV program Making Lan-
guage) Applied to Interactive Application,” Pro-
ceedings of the Information Processing Society in
Japan Annual Convention, Demo 4, 3-641, (1998)

[6] T. Yokoyama, K. Yaegashi, H. Ueda, M. Hayashi,
Y. Orihara, S. Shimoda, T. Kurihara, “A TV pro-
gram generating / interactive aditing system based
on TVML (TV program Making Language),” Pro-
ceedings of the Third Symposium on Intelligent
Information Media, pp.75 -80, (1997)

[7] Ueda, H., Hayashi, M. and Kurihara, T., "DeskTop
TV Program Creation - TVML (TV program Mak-
ing Language) Editor -," ACM Multimedia'98 State
of the Art Demos (1998).

Fig. 6. An example of a TVML script and a program video generated from the script by a TVML Player

// Introducing Muddy Waters by TVML

set: change(setname=default)
character: casting(name=BOB)
character: casting(name=MARY)
character: bindmodel(name=BOB, modelname=BOB)
character: bindmodel(name=MARY, modelname=MARY)
character: position(name=BOB, x=-0.2, y=0, z=0.2, d=180, posture=standing)
character: position(name=MARY, x=0.2, y=0.0, z=0.2, d=180, posture=standing)
character: setvoice(name=BOB, voicetype=e_man)
character: setvoice(name=MARY, voicetype=e_kid)
camera: movement(pan=0, ti l t=55.0, x=0, y=0.34, z=-0.39, vangle=50,
transition=immediate)

sound: playfile(filename=muddyhoochie.aiff)
super: on(type=infilehtml, tagname=open.script)
character: walk(name=BOB, x=-0.1, y=0.0, z=-0.3, d=200, wait=no)
character: walk(name=MARY, x=0.1, y=0.0, z=-0.3, d=160)
camera: twoshot(name1=BOB, name2=MARY)
character: sit(name=BOB, wait=no)
character: sit(name=MARY)
super: on(type=text, text = "MARY BOB")
character: bow(name=BOB, wait=no)
character: bow(name=MARY)

character: talk(name=BOB, text="Hello everybody.")
character: talk(name=MARY, text="Thank you for tuning in.")
character: talk(name=BOB, text="Do you know who's the father of the Blues?")

character: look(name=MARY, what=BOB)
character: talk(name=MARY, text="Father?")

character: look(name=BOB, what=MARY)
character: talk(name=BOB, text="Yes.")

character: look(name=BOB, what=camera)
character: look(name=MARY, what=camera)

camera: closeup(what=BOB, transition=continuous)
character: talk(name=BOB, text="It's Muddy Waters.")
camera: twoshot(name1=BOB, name2=MARY, transition=immediate)
character: talk(name=BOB, text="Let's watch him anyway.")

super: off()
sound: stop()
movie: playfile(filename=Waltz4.mov, from=130, to=483, wait=no)

wait(time=0.5)
super: on(type=text, text="Muddy Waters sings Mannish Boy.")

movie: wait_playfile()
super: off()

character: talk(name=BOB, text="Here is his brief career.")

super: off()
title: display(type=infilehtml, filename=MUDDYCAREER.script, wait=no)

wait(time=0.5)
narration: talk(who=BOB, text="He was born in 1915.")
wait(time=0.5)

character: talk(name=BOB, text="Bye with his great performance.")
character: talk(name=MARY, text="Bye bye.")

super: on(type=infilehtml, filename=endingsuper.script)
movie: playfile(filename=Waltz4.mov, from=613, to=860)

super: off()
sound: stop()

title: display(type=pattern, pattern=black, displaytime=0.5)

$ open.script
<BODY TEXT="#ffffaa"><FONT FACE=rock
SIZE=25>

<C>MUSIC SHOW

<H5>brings you all kinds of musician.

<H2>MUDDY WATERS

<H3>brought you by NHK
$

$ MUDDYCAREER.script
<BODY BGCOLOR="#bbbbbb"
TEXT="#222222">

<C><H2>Muddy Waters

<L><H4>
(McKinley Morganfield)

<H5>
 Birth: Apr 4 , 1915 - Rolling Fork, MS

 Death: Apr 30, 1983 - Westmont, IL

 Style: R&B, Electric Chicago Blues

 Instruments: Guitar, Harmonica, Vocals
$

Appendix: TVML command overview

1. CG character command

1.1 character: casting(name) - Name CG character
1.2 character: openmodel(modelname,filename) - Open the CG character modeling data
1.3 character: closemodel (modelname) - Close the CG character modeling data
1.4 character: bindmodel(name,modelname) - Bind the CG character modeling data to the character
1.5 character: setvoice(name,voicetype) - Set up the CG character's talking voice
1.6 character: visible(name,switch) - Show and Hide the CG character
1.7 character: position(name,x,y,z,d,posture) - Position the CG character (standpoint)
1.8 character: talk(name,text,emotion,pausehead,pausetail,rate,pitch, intonation,volume,wait) - CG character's

dialogue
1.9 character: talkfile(name,filename,emotion,pausehead,pausetail,wait) - CG character speaks prerecorded dialogue
1.10 character:walk(name,x,y,z,d,stopmode,pich,compass,stop,wait) - CG character walks
1.11 character: stop(name, wait) - Walking CG character stops
1.12 character: sit(name, speed, hiplevel, wait) - CG character sits
1.13 character: stand(name, speed, wait) - CG character stands up
1.14 character: turn(name, speed, style, wait) - CG character faces different direction
1.15 character: bow(name, style, speed, level, wait) - CG character bows
1.16 character: look(name, what, track, speed, wait) - CG character looks at something
1.17 character: gaze(name,pitch, yaw, roll, speed, wait) - CG character's head turns in specified direction
1.18 character: shake(name,state, level) - CG character shakes
1.19 character: openmouth(name,state, level) - CG character's mouth opens
1.20 character: openkeyframe(keyframename, filename) - Open keyframe data file
1.21 character: closekeyframe(keyframename) - Close keyframe data file
1.22 character: keyframe(name, keyframename, speedratio, repeat, wait) - Operate CG character by keyframe data

2. Camera command

2.1 camera: assign(cameraname) - Name camera
2.2 camera: switch(cameraname) - Switch cameras
2.3 camera: movement(cameraname, pan, tilt, roll, x, y, z, vangle, transition, style, speed, wait) - Move

camera to a specified position
2.4 camera: twoshot(cameraname, name1, name2, transition, dolly, style, speed, adjustpan, adjusttilt,

adjustroll, adjustx,adjusty, adjustz, adjustvangle, wait) - Twoshot
2.5 camera: closeup(cameraname, what, transition, dolly, style, speed, adjustpan, adjusttilt, adjustroll, adjustx,

adjusty,adjustz, adjustvangle, wait) - Closeup
2.6 camera: catch(cameraname, what, track, speed, adjustpan, adjusttilt, adjustroll, adjustx, adjusty, adjustz,

adjustvangle, wait)- Track character only by panning and tilting
2.7 camera: openkeyframe(keyframename, filename) - Open keyframe data file
2.8 camera: closekeyframe(keyframename) - Close keyframe data file
2.9 camera: keyframe(cameraname, keyframename, speedratio, wait) - Operate camera by keyframe data

3. CG studio set command

3.1 set: assign(setname) - Name set
3.2 set: openmodel(setname, filename) - Open set modeling data
3.3 set: closemodel(setname) - Close set modeling data
3.4 set: change(setname) - Change set

4. CG prop command

4.1 prop: assign(propname) - Name prop (Ex: desk, chair, vase,...)
4.2 prop: openmodel(propname, filename) - Open prop modeling data

4.3 prop: closemodel(propname, filename) - Close prop modeling data
4.4 prop: position(propname, x, y, z, pitch, yaw, roll, scale) - Place the prop
4.5 prop: visible(propname, switch) - Show and Hide the prop
4.6 prop: openimageplate(propname, filename, platesizeh, platesizev) - Create an image plate prop

5. CG lighting command

5.1 light: assign(lightname) - Name lighting
5.2 light: model(lightname, type, arg0, arg1, arg2,) - Setup lighting type = ambient, flat, point, spot
5.3 light: switch(lightname, switch) - Turn lighting On and Off

6. Movie command

6.1 movie: open(moviename, filename) - Pre-open movie file
6.2 movie: close(moviename) - Stop and close running movie
6.3 movie: play(moviename, from, to, speedratio, wait) - Run movie file (In case of pre-open)
6.4 movie: playfile(filename, from, to, speedratio, wait) - Run movie file (in case of direct-open)
6.5 movie: control(type) - Control running movie type = slow, fast, backward, pause, play

7. Title command

7.1 title: display(type, arg0, arg1, arg2,, wait) - Display title type = imagefile, infilehtml, htmlfile, pattern

8. Superimpose command

8.1 super: on(type, arg0, arg1, arg2, ...) - Superimpose type = text, infilehtml, htmlfile, imagefile
8.2 super: off() - Turn off superimpose

9. Sound command

9.1 sound: open(soundname, filename) - Pre-open audio file and name the sound
9.2 sound: close(soundname) - Close audio file
9.3 sound: play(soundname, repeat, wait) - Play the sound (in case of pre-open)
9.4 sound: playfile(filename, repeat, wait) - Play the sound (in case of direct-open)
9.5 sound: stop(soundname) - Close the sound
9.6 sound: mixer(source, action, level, fadeintime, fadeouttime, bgmlevel, wait) - Operate audio mixer

10. Narration command

10.1 narration: narratorvoice(voicetype) - Designate narrator's speaking voice
10.2 narration: talk(who, text, pausehead, pausetail, rate, pitch, intonation, volume, wait) - Insert narration

11. Video effect command

11.1 video: switcher(source, action, transitiontime, effecttype, wait) - Operate video switcher

12. Direct command

12.1 wait(time) - Wait designated time period then return
12.2 setcaption(switch, displaytime, color, border, borderwidth, bordercolor) - Closed captions set up
12.3 displaycaption(state) - Show and Hide closed captions
12.4 skipscript(switch) - S kip TVML script
12.5 end() - Finish running TVML script
12.6 reset() - Reset TVML Player

